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Abstract. A quantum theory is developed for the scattering of massive scalar fields on a class
of non-globally hyperbolic spacetimes represented by foliations of Minkowski spacetime with
a fixed compact set removed from each Cauchy surface. The field is restricted to the exterior
of this set (exterior domain). At the classical level, the boundary value problem is recast as
an abstract Cauchy problem in a Hilbert space, and the field solution is obtained as a unitary
mapping of Cauchy data. The scattering theory is treated using a two Hilbert space approach, and
the wave operators are constructed and shown to be asymptotically complete. At the quantum
level, a field operator is constructed yielding a representation of the CCRs on a Fock space.
Representations for the ‘in’ and ‘out’ asymptotic fields are developed, and a scattering operator
is constructed and shown to be unitarily implementable.

1. Introduction

The quantization of linear quantum fields on globally hyperbolic spacetimes is well
understood on a mathematical level, and considerable progress has been made in the
development of rigorous scattering theories for such spacetimes [1–20]. Recall that a
spacetime(M, g) is globally hyperbolic if the strong causality assumption holds onM, and
if for any two pointp, q ∈M, J+(p)∩J−(q) is compact and contained inM (J±(p) is the
causal future/past ofp) [21]. Apparently few rigorous results exist for field quantization and
scattering on non-globally hyperbolic spacetimes [22, 23]. Such spacetimes are not without
interest as exemplified by the Casmir effect in which the field is confined to a spacial region
between two parallel boundaries [1].

In this article, we develop a quantum scattering theory for massive scalar fields on a
class of non-globally hyperbolic spacetimes. Specifically, we study field quantization on
foliations of Minkowski spacetime with a fixed compact set3 ⊂ R3 removed from each
Cauchy surface, i.e.

M ≈ R×�
where� ≡ R3\3. The field is restricted to the ‘exterior domain’�, and takes on a
prescribed boundary condition on∂� (boundary of�). Note that the absence of3 renders
M non-globally hyperbolic becauseJ+(p) ∩ J−(q) is not always compact.

The analysis divides into the classical and quantum problems. For the classical problem,
we reformulate the boundary value problem as an operator equation in a Hilbert space and
obtain a field solution as a unitary mapping of Cauchy data. The classical scattering theory
is treated using a two Hilbert space approach. Wave operators are constructed and shown
to be asymptotically complete, thus giving rise to a scattering operator.

0305-4470/97/227895+23$19.50c© 1997 IOP Publishing Ltd 7895
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For the quantum problem, we construct a field operator on a Fock space thereby
obtaining a representation of the CCRs. ‘In’ and ‘out’ asymptotic fields are defined
and the corresponding Weyl algebras are constructed. We define vacuum states for these
algebras, and then use a Gel’fand–Naimark–Segal (GNS) construction to obtain Hilbert
space representations for these states. Finally, we obtain representations of both algebras
on the same Hilbert space, and define a mapping from one algebra to the other. We show
that this mapping is unitarily implementable and obtain an explicit representation for the
quantum scattering operator.

2. The classical problem

Consider the scattering of a scalar field off an obstacle in the form of a compact subset
3 ⊂ R3. We choose a reference frame at rest with respect to3, and seek a solution to

�φ +m2φ = 0 m ∈ (0,∞) (2.1)

on the (connected) exterior domain� ≡ R3\3 which has aC∞ boundary∂� of measure
zero. For the problem to be well posed we specify the Dirichlet boundary condition on∂�.
Since we do not specify any particular shape for3, we need to employ abstract methods.
To this end, we reformulate this classical boundary value problem as an abstract Cauchy
problem in a Hilbert space. This problem has been studied extensively for the wave equation
(m = 0) [24].

2.1. The Cauchy problem

Let C∞0 (�) denote the infinitely differentiable, complex-valued functions with compact

support on�, and let
◦
Hm(�) denote the completion ofC∞0 (�) with respect to the norm

‖f ‖2
1 ≡

∑
|α|6m

∫
�

|Dαf |2 dx

whereα = (α1, α2, α3) andDα = ∂α1

∂x
α1
1

∂α2

∂x
α2
2

∂α2

∂x
α2
2

. The corresponding real-valued spaces are

C∞0 (�,R) and
◦
Hm(�,R) (functions and spaces are complex unless indicated otherwise).

There are also the Sobolev spaces

Hm(�) = {f : Dαf ∈ L2(�), |α| 6 m}
and it is well known that

◦
Hm(�) ⊂ Hm(�) (proper subspace). Note that

◦
H1(R3) = H1(R3).

In this section, we work primarily with
◦
H1(�) whose elements satisfy the Dirichlet

condition on∂� in a generalized sense. The goal is to obtain an
◦
H1(�)-valued solution to

(2.1). This equation can be rewritten as a first-order system,

∂

∂t

(
φ(t)

π(t)

)
= −iH

(
φ(t)

π(t)

)
(2.2)

whereπ(t) = ∂tφ(t),

H = i

(
0 I

−B2 0

)
(2.3)

and

B2 ≡ −4�D +m2 (2.4)
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where−4�D is the Dirichlet Laplacian (Friedrich’s extension) on�, i.e. it is the unique
self-adjoint operator onL2(�, dx) whose quadratic form is the closure of

q(f, g) =
∑
|α|=1

∫
�

(Dαf )(Dαg) dx

with domainC∞0 (�) [25]. Note thatB2 and−4�D have the same form domain,Q(B2) =
Q(−4�D) =

◦
H1(�). Let B =

√
−4�D +m2 denote the square root of the strictly positive

self-adjoint operatorB2, and letH(�) denote the Hilbert space

H(�) ≡ D(B)⊕ L2(�) (2.5)

with norm

‖F‖2
H(�) = ‖f1‖2

B + ‖f2‖2
L2(�)

whereF =
(
f1

f2

)
, and

‖f ‖2
B ≡ 〈Bf,Bf 〉L2(�).

We note thatD(B) = D(

√
−4�D) = Q(−4�D). It is well known thatH is self-adjoint

on H(�) with D(H) = D(B2) ⊕ D(B) [26]. From Stone’s theorem we have a group of
unitary operatorsU(t, s) ≡ exp(−iH(t − s)) and from the functional calculus [26],

U(t, 0) =
(

cos(Bt) B−1 sin(Bt)
−B sin(Bt) cos(Bt)

)
. (2.6)

Thus, we obtain anH(�)-valued solution to the Cauchy problem of the form

F(t) = U(t, 0)F

where

∂tF (t) = −iHF(t)

and F ∈ D(H) are the initial data. Note that the first componentf1(t, ·) ∈
◦
H1(�) as

desired.

Remark 1.If the initial data are smooth, i.e.F ∈ C∞0 (�)×C∞0 (�), then the solutionF(t)
is C∞ in t and x. This is not an obvious fact, but the argument for it is standard. First,
for smoothF we have dn

dtn F (t) = (−iH)nF (t) = U(t, 0)(−iH)nF ∈ H(�) which implies
that fi(t, ·) is infinitely often, strongly differentiable int with respect to‖ · ‖L2(�)(fi(t, ·)
is the ith component ofF(t)). It is easy to show thatfi(t, ·) is locally an element of
L2(R, L2(�)) = L2(R × �) (see section II.4 of [27]). Moreover, theL2 derivatives
dn

dtn fi(t, ·) equal the distributional time derivatives. We also have that(−4�D)nfi(t, ·)
∈ L2(�), for any non-negative integern. Therefore, from Sobolev’s lemma,fi can be
uniquely identified with an element ofC∞(R×�) [28].

We denote the interacting system by the triplet{H(�),H,U(t,0)}, and the
corresponding free system by{H0(R3),H0, U0(t, 0)} for which � = R3 andU0(t, s) ≡
exp(−iH0(t − s)), with

H0 = i

(
0 I

−B2
0 0

)
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whereD(H0) = D(B2
0) ⊕ D(B0), B2

0 = −4 + m2, and−4 is the Laplacian onL2(R3).
Note,

H0(R3) ≡ D(B0)⊕ L2(R3)

whereD(B0) = H1(R3), and

〈F,G〉H0(R3) ≡ 〈f1, g1〉B0 + 〈f2, g2〉L2(R3) (2.7)

with

〈f1, g1〉B0 ≡ 〈B0f1, B0g1〉L2(R3).

For the free dynamics, it is well known that if the initial dataF are smooth then the
solutionF(t) = U(t, 0)F is a smooth classical solution and that [29]

sup
x

|f1(t, x)| < c

|t | 32
|t | > 1 (2.8)

whereF(t) =
(
f1(t)

f2(t)

)
. It readily follows that

‖f1(t)‖L2(B) < c
V ol(B)

|t | 32
(2.9)

for any bounded subsetB ⊂ R3. Moreover,f2(t) is also a smooth solution and the same
estimate applies to it.

2.2. Symplectic structure

In this section we describe free and interacting dynamical systems and corresponding
symplectic structures that are needed for the quantum problem. We start with the free
dynamics, let

H0(R3,R) ≡ H1(R3,R)⊕ L2(R3,R). (2.10)

We prove the following preliminary result.

Proposition 1.The free evolution operator maps real-valued data to real-valued data, i.e.
U0(t, 0) : H0(R3,R)→ H0(R3,R).

Proof. Note, H0 = iH̃0 where H̃0 is a real operator. SinceH0 is self-adjoint, H̃0 is
skew-adjoint, and so is its restriction (also denotedH̃0 ) to H0(R3,R) with

D(H̃0) ≡ [D(B2
0) ∩H1(R3,R)] ⊕ [D(B0) ∩ L2(R3,R)].

Thus, from Stone’s theorem,̃H0 generates a unitary group̃U0(t, 0) : H0(R3,R) →
H0(R3,R), which is just the restriction ofU(t, 0) to H0(R3,R). �

For the free dynamics there is a conserved current (∂µjµ = 0) where

jµ = φ1∂µφ2− (∂µφ1)φ2

andφ1, φ2 are smooth real-valued solutions of (2.1). The time componentj0 gives rise to
the form ∫

R3
(φ1∂tφ2− (∂tφ1)φ2) dx (2.11)

which is independent of time. We introduce the symplectic form (skew symmetric and
non-degenerate),

σR3(F,G) ≡
∫
R3
(f1g2− f2g1) dx
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and write the invariance of (2.11) as follows,

σR3(U0(t, 0)F,U0(t, 0)G) = σR3(F,G) (2.12)

for smoothF andG (F(t) = U0(t, 0)F ∈ C∞(R4) for smoothF ). Since

|σR3(F,G)| 6 c‖F‖H0(R3,R)‖G‖H0(R3,R)

for some constantc, (2.12) holds on all ofH0(R3,R).
Finally, it is well known that the free dynamics can be diagonalized by use of the

transform [26]

T = 1√
2

(
B

1
2

0 iB
− 1

2
0

B
1
2

0 −iB
− 1

2
0

)
. (2.13)

Specifically,h0 ≡ TH0T
−1 or

h0 = −
(−B0 0

0 B0

)
which is self-adjoint onL2(R3)⊕L2(R3) with domainD(h0) = D(B0)⊕D(B0). In terms
of the new variables we havea(t) = exp(−ih0t)a(0) where

a(t) =
(
a+(t)
a−(t)

)
with componentsa±(t) = exp(∓iB0t)a

±(0) which are the positive/negative frequency
components. In terms of the original variables we have

a(t) = T U0(t, 0)F

and thus the operator

K0F ≡ 1√
2

[B
1
2

0 f1+ iB−
1
2

0 f2] (2.14)

maps the field solution to its positive frequency component. Note,D(B0) ⊂ D(B
1
2

0 ) and

L2(R3,R) ⊂ D(B−
1
2

0 ) (B
− 1

2
0 is bounded), therefore,

H0(R3,R) ⊂ D(K0). (2.15)

Also, sinceRan(B
1
2

0 ) = D(B
− 1

2
0 ) = L2(R3) andRan(B

− 1
2

0 ) = D(B
1
2

0 ) is dense inL2(R3)

we have thatK0 mapsH0(R3,R) onto a dense set inL2(R3). MoreoverK0, is symplectic,
i.e.

σR3(F,G) = 2 Im〈K0F,K0G〉L2(R3).

This operator plays a key role in the development of the quantum theory.
Now consider the interacting system, let

H(�,R) ≡
◦
H1(�,R)⊕ L2(�,R). (2.16)

Proposition 2.The interacting evolution operator maps real-valued data to real-valued data,
i.e. U(t, 0) : H(�,R)→ H(�,R).
Proof. This proof is the same as in proposition 1 withH0 replacedH , R3 replaced by�
etc. �
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We define the symplectic form

σ�(F,G) ≡
∫
�

(f1g2− f2g1) dx

and prove

Theorem 2.1.Let F,G ∈ H(�,R) then

σ�(U(t, s)F,U(t, s)G) = σ�(F,G).
Proof. First, note thatH = iH̃ whereH̃ is a skew-adjoint real operator onH(�,R) with

D(H̃ ) ≡ [D(B2) ∩
◦
H1(�,R)] ⊕ [D(B) ∩ L2(�,R)]

it readily follows that

σ�(H̃F,G) = −σ�(F, H̃G) (2.17)

for F,G ∈ D(H̃ ). Also, note thatσ�(F,G) is bounded, i.e.

|σ�(F,G)| 6 c‖F‖H(�,R)‖G‖H(�,R) (2.18)

and hence continuous. Now, consider

d

dt
σ�(F (t),G(t)) = σ�(H̃F (t),G(t))+ σ�(F (t), H̃G(t)) (2.19)

whereF(t) = U(t, 0)F , G(t) = U(t, 0)G with F,G ∈ D(H̃ ). This follows from (2.18),
and the fact thatU(t, 0) is strongly differentiable onD(H̃ ). Next, apply (2.17) to (2.19)
and obtain

d

dt
σ�(F (t),G(t)) = 0

which implies

σ�(F (t),G(t)) = σ�(F,G) (2.20)

for all real valuedF,G ∈ D(H̃ ). Finally, from (2.18) and the fact thatD(H̃ ) is dense in
H(�,R) we have that (2.20) holds on all ofH(�,R). �

In summary, we have free and interacting dynamical systems each of which consists of a
real symplectic space, a symplectic form, and a one-parameter symplectic group. These are
represented by the triplets(H0(R3,R), σR(·, ·), U0(t, 0)) and (H(�,R), σ�(·, ·), U(t,0)),
respectively. Moreover, there is a real-linear symplectic operatorK0 that maps free field
solutions inH0(�,R) to their positive frequency components inL2(R3).

2.3. Scattering theory

We turn now to the classical scattering problem. The goal is to show that the scattered field
behaves like a free field in the distant past and future. However, the free and interacting
fields exist in different Hilbert spaces, and therefore, to compare them we use the two
Hilbert space technique developed by Kato [30]. As a first step, we define an identification
operatorJ ∈ B(H0(R3),H(�)) that maps free solutions to the interacting space.

Definition 1. An identification operatorJ is a smooth, real-valued, and bounded mapping
J : H0(R3)→ H(�) that maps to zero on some neighbourhood of∂�, and is the identity
off a bounded set.

Remark 2.Note that any two identification operators differ only on a bounded set.
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We expect the scattered solutions to look asymptotically free ast →±∞. We take this
to mean that forF0 ∈ H0(R3) there is anF ∈ H(�) such that

lim
t→±∞‖e

−iHtF − Je−iH0tF0‖H(�) = 0 (2.21)

whereJ is any identification operator. Since e−iHt is unitary, (2.21) reduces to

lim
t→±∞‖F − eiHtJe−iH0tF0‖H(�) = 0

and the original problem amounts to proving the existence of strong limits,

W± ≡ s − lim
t→±∞W(t) (2.22)

where

W(t) ≡ eiHtJe−iH0t .

It turns out thatW± exist and are complete, with

Ran(W±) = Pac(H)H(�) (2.23)

wherePac(H) is the projection onto the absolutely continuous spectrum ofH . However,
the proof of this is tedious, and is given in appendix B.

Recall thatU(t, 0), J andU0(t, 0) are real operators, and therefore so areW±, i.e.

W± : H0(R3,R)→ H(�,R). (2.24)

It readily follows that

‖W±F‖H(�,R) 6 c‖F‖H0(R3,R) (2.25)

for some constantc. Also note that

s − lim
t→±∞W(t + τ) = s − lim

t→±∞W(t)

for any fixedτ, and thereforeW± intertwineU(t, 0) andU0(t, 0)

U(t, 0)W± = W±U0(t, 0) (2.26)

which, from Stone’s theorem, implies,

HW± = W±H0. (2.27)

From (2.26), and the fact thatW± are complete, we have

W−1
± U(t, 0) = U0(t, 0)W−1

± . (2.28)

Finally, sinceW± are complete, we have the existence of the classical scattering operator

Scl ≡ W−1
+ W−

and its inverseS−1
cl = W−1

− W+. Note thatScl is a bijection fromH0(R3) onto itself.
Moreover, from (2.26) and (2.28) we have

SclU0(t, 0) = U0(t, 0)Scl. (2.29)

The operatorScl plays a key role in the development of the quantum scattering theory.
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3. The quantum problem

The quantum theory begins with the construction of an interacting field operator on a Fock
space. LetH(1) be a complex Hilbert space, and letFs(H(1)) denote the Bose–Fock space
overH(1),

Fs(H(1)) = C⊕
( ∞⊕
n=1

(H(1)⊗n)s
)

(3.1)

where the subscripts denotes the symmetric tensor product [31]. The vectors in this space
can be represented by sequences of the form

9 = (9(0), 9(1), . . . , 9(n), . . .) (3.2)

where

9(n) = 1√
n!

∑
π

fπ1 ⊗ fπ2 ⊗ · · · ⊗ fπn (3.3)

f1, . . . , fn ∈ H(1), and the sum is over all permutationsπ; (1, 2, . . . , n) 7→ (π1, π2, . . . , πn)

of the indices. These vectors are invariant with respect to the interchange of their variables.
The inner product onFs(H(1)) is induced by the inner product onH(1),

〈9,9〉Fs = |9(0)|2+ 〈9(1), 9(1)〉H(1) + · · · + 〈9(n),8(n)〉H(n) + · · · (3.4)

where

〈9(n), 9(n)〉H(n) =
1

n!

〈∑
π ′
fπ ′1 ⊗ · · · ⊗ fπ ′n ,

∑
π

fπ1 ⊗ · · · ⊗ fπn
〉
H(n)

= 1

n!

∑
π ′

∑
π

n∏
i=1

〈fπ ′i , fπi 〉H(1) . (3.5)

To complete a particle description we define creation and annihilation operatorsa∗(·)
anda(·),

a∗(f )9(n) ≡ 1√
(n+ 1)!

∑
π

fπ0 ⊗ fπ2 ⊗ · · · ⊗ fπn (3.6)

and

a(f )9(n) ≡ 1√
(n− 1)!

∑
π

〈f, fπ1〉H(1)fπ2 ⊗ · · · ⊗ fπn (3.7)

where, in (3.6),f0 = f and the permutationsπ; (0, 1, . . . , n) 7→ (π0, π1, . . . , πn). Note that
a∗(·) and a(·) are complex linear and antilinear in their arguments, respectively. Finally,
we define the Fock spaces for the free and scattered fields,

Ffree≡ Fs(L2(R3))

and

Fscatt≡ Fs(L2(�)).

We denote the corresponding creation and annihilation operators bya∗0(·), a∗0(·),anda∗(·),
a(·), respectively. There are also the finite particle subspacesF0

free andF0
scatt consisting of

vectors in which all but a finite number of terms in (3.2) are zero.



Quantization and scattering of scalar fields 7903

We are now ready to construct the quantum fields. First, we construct the standard
representation of the free field onFfree. The time-zero free-field operator and its conjugate
momentum are given by

φ0(f ) ≡ 1√
2

[a∗0(B
− 1

2
0 f )+ a0(B

− 1
2

0 f )]

and

π0(g) ≡ i√
2

[a∗0(B
1
2

0 g)− a0(B
1
2

0 g)]

where the test functions are taken to be real-valued. To make use of the two-component
classical theory, we introduce another field operator (at time zero)

σR3(80, F ) ≡ φ0(f2)− π0(f1)

whereF ∈ H0(R3,R) = H1(R3,R)⊕ L2(R3,R). This field can be rewritten as

σR3(80, F ) = −i[a∗0(K0F)− a0(K0F)]

whereK0 : [D(K0) ∩ H0(R3,R)] → L2(R3) is defined in (2.14). The field at any other
time is given by

σR3(80
t , F ) = σR3(80, U0(0, t)F )

and therefore, the time evolution mimics the free evolution,80
t = U0(t, 0)80.

The time-zero interacting field operator and its conjugate momentum are given by

φ(f ) ≡ 1√
2

[a∗(f )+ a(f )]

and

π(g) ≡ i√
2

[a∗(g)− a(g)]

where the test functions are real-valued. This choice ofφ andπ yield a representation of
the CCRs,

[φ(f ), π(g)] = i〈f, g〉L2(�)

although it does not reduce to the standard representation when� = R3. We choose this
representation for both technical reasons, as well as for its simplicity. We introduce the
two-component field8(·),

σ�(8, F ) ≡ φ(f2)− π(f1) (3.8)

for real-valuedF ∈ H(�,R) =
◦
H1(�,R)⊕ L2(�,R). This defines the field at time-zero.

At any other time it is defined by

σ�(8t , F ) ≡ σ�(8,U(0, t)F ) (3.9)

which gives8t = U(t, 0)8 just as in the classical problem. SinceU(t, 0) preserves the
real-valued nature of the data, this definition makes sense. We recover the single-component
fields as follows:

φ(f, t) ≡ σ�
(
8,U(0, t)

(
0
f

))
and

π(g, t) ≡ −σ�
(
8,U(0, t)

(
g

0

))
.
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It follows that

[σ�(8t , F ), σ�(8t ,G)] = iσ�(U(0, t)F,U(0, t)G)

= iσ�(F,G) (3.10)

for real-valuedF andG.
Finally, it is important to note that spatial derivatives of the field operators are defined

in a distributional sense, e.g.

(−4�D)φ(f, t) = φ(−4�Df, t).
However, time derivatives are taken to be the strong derivatives of an operator-valued
function, e.g.

d

dt
[φ(f, t)9]

for 9 ∈ F0
scatt (finite particle vectors). It is well known that

‖a(f )9‖Fscatt 6 ‖f ‖L2(�)‖(N+ 1)
1
29‖Fscatt (3.11)

whereN is the number operator, with a similar relation holding fora∗(·) [31]. Thus,

d

dt
[φ(f (t))9] = φ

(
d

dt
f (t)

)
9 (3.12)

where d
dt f (t) is the strong derivative off (t) with respect to‖ · ‖L2(�). Similar relations

hold for π(f (t)), as well as for the corresponding free fields. Note that
d

dt
F (t)

‖·‖H(�)= −iHF(t)

whereF(t) = U(t, 0)F, and since‖ · ‖2
L2(�)
⊕ ‖ · ‖2

L2(�)
6 c‖ · ‖2

H(�), we have

d

dt
fi(t)

‖·‖
L2(�)= [−iHF(t)]i (3.13)

wherefi(t) and [−iHF(t)]i are theith component ofF(t) and−iHF(t), respectively.
We are finally ready to prove

Theorem 3.1.The fieldsφ(·, t) andπ(·, t) satisfy the following quantum requirements
(1) ∂tφ(·, t) = π(·, t).
(2) φ(·, t) satisfies the field equation

∂2
t φ(f, t)−4�Dφ(f, t)+m2φ(f, t) = 0.

(3) The fields satisfy the canonical commutation relations
(i) [φ(f, t), φ(g, t)] = 0
(ii) [π(f, t), π(g, t)] = 0
(iii) [ φ(f, t), π(g, t)] = i〈f, g〉L2(�).
(4) φ(·, t) satisfies the principle of microscopic causality.

Proof.
(1) Apply (3.12) and (3.13) to obtain

∂tφ(f, t) = σ�
(
8, ∂tU(0, t)

(
0
f

))
= σ�

(
8,U(0, t)iH

(
0
f

))
= −σ�

(
8t,

(
f

0

))
= π(f, t).
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(2) Again, from repeated application of (3.12) etc, we have,

∂2
t φ(f, t) = σ�

(
8, ∂2

t U(0, t)

(
0
f

))
= σ�

(
8,−U(0, t)H 2

(
0
f

))
= σ�

(
8t,

(
0

−(−4�D +m2)f

))
= −(−4�D +m2)φ(f, t).

(3) The CCRs are recovered from (3.10) via a judicious choice of test function, e.g.

[φ(f, t), φ(g, t)] = iσ�

((
0
f

)
,

(
0
g

))
= 0.

The remaining relations are obtained in a similar fashion.
(4) We show that

[φ(f, t), φ(g, t ′)] = 0

whenBf (t) ≡ {(x, s) : x ∈ suppf, s = t} andBg(t ′) are space-like separated. Consider,

[φ(f, t), φ(g, t ′)] = iσ�

(
U(0, t)

(
0
f

)
, U(0, t ′)

(
0
g

))
= iσ�

(
U(t ′, t)

(
0
f

)
,

(
0
g

))
= i

∫
�

f1(t
′ − t)g dx (3.14)

wheref1(t
′ − t) is the first component ofU(t ′, t)

(
0
f

)
. SinceBf (t) andBg(t ′) are space-

like separated, dist(y, Bf (0)) > |t ′ − t |for y ∈ Bg(0). However, from theorem A.1, we have
suppf1(t

′ − t) = {x : dist(x, Bf (0)) 6 |t ′ − t |}. Hence suppf (t ′ − t) ∩ suppg = ϕ (the
empty set) and (3.14) is zero. �

3.1. Asymptotic fields

We expect the interacting field to behave like a free field in the distant past and future. To
sharpen this concept we define time-zero asymptotic fields8±,

σR3(8±, F ) ≡ σ�(8,W±F) (3.15)

for F ∈ H0(R3,R). Recall from (2.24) that the wave operators are real; therefore (3.15)
makes sense. Also, note that8± are operators onFscatt even though the test functions are
elements of the free Hilbert space. The time evolution mimics the free classical problem,

σR3(8±t , F ) = σR3(8±, U0(0, t)F )

so that formally8±t = U0(t, 0)8±. The single-component fields are recovered as follows,

φ±(f, t) ≡ σR3

(
8±t ,

(
0
f

))
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and

π±(g, t) ≡ −σR3

(
8±t ,

(
g

0

))
.

These fields satisfy the free-field quantum requirements. To show this we make use of the
following results:

Lemma 1.The wave operatorsW± are symplectic, i.e.

σR3(F,G) = σ�(W±F,W±G)
whereF , G ∈ H0(R3,R).

Proof. Let F,G ∈ C∞0 (R3,R)× C∞0 (R3,R), and consider,

σR3(F,G) = σR3(U0(t, 0)F,U0(t, 0)G)

= σ�(U0(t, 0)F,U0(t, 0)G)+ σ3(U0(t, 0)F,U0(t, 0)G). (3.16)

The first term on the right-hand side can be rewritten as

σ�(U0(t, 0)F,U0(t, 0)G) = σ�((I − J 2)U0(t, 0)F,U0(t, 0)G)+ σ�(W(t)F,W(t)G)
(3.17)

where in the last term we have used the fact thatσ�(·, ·) is invariant with respect toU(t, 0).
Notice that the last term in (3.16) and the(I − J 2) term in (3.17) reduce to integrals over
bounded sets. However, these terms vanish ast →±∞, since free solutions decay to zero
over such sets as shown in (2.9). Therefore,

σR3(F,G) = lim
t→±∞ σ�(W(t)F,W(t)G)

= σ�(W±F,W±G) (3.18)

where in the last step we have made use of (2.18) and (2.22). Finally, from (2.25) and
the fact thatC∞0 (R3,R)×C∞(R3,R) is dense inH0(R3,R), we have that (3.18) holds on
H0(R3,R). �
Lemma 2.The fields8±t satisfy the following commutation relation

[σR3(8±t , F ), σR3(8±t , G)] = iσR3(F,G).

Proof. Consider,

[σR3(8±t , F ), σR3(8±t , G)] = [σ�(8,W±U0(0, t)F ), σ�(8,W±U0(0, t)G)],

= iσ�(W±U0(0, t)F,W±U0(0, t)G)

= iσR3(U0(0, t)F,U0(0, t)G)

= iσR3(F,G)

where in the last two steps we have made use of lemma 1, and the fact thatU0(t, 0) is
symplectic, respectively. �

We are finally ready to prove,

Theorem 3.2.The fields φ±(·, t) and π±(·, t) satisfy the following free-field quantum
requirements:

(1) ∂tφ±(·, t) = π±(·, t).
(2) φ±(·, t) satisfies the free-field equation,

∂2
t φ
±(f, t)−4φ±(f, t)+m2φ±(f, t) = 0.

(3) The asymptotic fields satisfy the free-field CCRs,
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(i) [φ±(f, t), φ±(g, t)] = 0.
(ii) [π±(f, t), π±(g, t)] = 0.
(iii) [ φ±(f, t), π±(g, t)] = i〈f, g〉L2(R3).
(4) φ±(·, t) satisfies the principle of microscopic causality.
(5) The scattered field converges to the asymptotic fields in the distant past and future,

i.e.

lim
t→±∞‖{σ�(8t , JU0(t, 0)F )− σR3(8±t , U0(t, 0)F )}9‖Fscatt = 0

for any finite particle vector9.

Proof.
(1) We apply the intertwining relations (2.26), (2.27), and obtain,

∂tφ
±(f, t) = σ�

(
8, ∂tW±U0(0, t)

(
0
f

))
= σ�

(
8, ∂tU(0, t)W±

(
0
f

))
= σ�

(
8,U(0, t)iHW±

(
0
f

))
= −σ�

(
8,W±U0(0, t)

(
f

0

))
= π±(f, t).

(2) Again, repeated application of (2.26), (2.27) yields

∂2
t φ
±(f, t) = σ�

(
8,−W±U0(0, t)H

2
0

(
0
f

))
= σR3

(
8±t ,

(
0

(−4+m2)f

))
= −(−4+m2)φ±(f, t).

(3) The CCRs are verified using the results of lemma 2, e.g.

[φ±(f, t), π±(g, t)] =
[
σR3

(
8±t ,

(
0
f

))
, σR3

(
8±t ,

(
g

0

))]
= iσR3

((
0
f

)
,

(
g

0

))
= i〈f, g〉L2(R3).

The other relations are obtained in a similar fashion.
(4) Just as in theorem 3.1, we show that

[φ±(f, t), φ±(g, t ′)] = 0

whenBf (t) andBg(t ′) are space-like separated. We have

[φ±(f, t), φ±(g, t ′)] = iσR3

(
U0(0, t)

(
0
f

)
, U0(0, t

′)
(

0
g

))
= iσR3

(
U0(t

′, t)
(

0
f

)
,

(
0
g

))
= i

∫
R3
f1(t

′ − t)g dx (3.19)
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wheref1(t
′ − t) is the first component ofU0(t

′, t)
(

0
f

)
. SinceBf (t) andBg(t ′) are space-

like separated we have dist(y, Bg(0)) > |t ′ − t | for y ∈ Bg(0). However, it is well known
that suppf (t ′−t) = {x : dist(x, Bf (0)) 6 |t ′−t |}, and therefore, suppf (t ′−t)∩suppg = ϕ
and (3.19) is zero.

(5) Let9 ∈ F0
scatt and consider,

lim
t→±∞‖{σ�(8t , JU0(t, 0)F )− σR3(8±t , U0(t, 0)F )}9‖Fscatt

= lim
t→±∞‖{σ�(8,U(0, t)JU0(t, 0)F )− σR3(8,W±F)}9‖Fscatt

= lim
t→±∞‖{σ�(8, (W(t)−W±)F )}9‖Fscatt

6 C9 lim
t→±∞‖(W(t)−W±)F‖H(�,R)

= 0

whereC9 is a constant that depends on9. Note, in the second last step we have made use
of (3.11). �

3.2. Asymptotic vacuum states

At this point, we have representations for the ‘in’ and ‘out’ asymptotic fields on the same
Fock space. However, the goal is to determine scattering amplitudes, and for this we need
to compare multiparticle ‘in’ and ‘out’ vectors. These vectors are obtained as follows.
We first construct Weyl algebras for the ‘in’ and ‘out’ fields, and then use an algebraic
argument to obtain ‘in’ and ‘out’ vacuum states. Next, we use the GNS construction to
obtain Hilbert space representations for these states. We then use the classical scattering
operator to obtain a representation of the ‘out’ algebra on the ‘in’ Hilbert space, thereby
defining a map between the ‘in’ and ‘out’ representations. Finally, we show that this map
is unitarily implementable.

To begin the analysis, recall that the operators8± and80 are self-adjoint onFscatt and
Ffree, respectively. Therefore, from Stone’s theorem, we have unitary Weyl operators,

Win(F ) ≡ eiσR3(8
−,F ) (3.20)

Wout(F ) ≡ eiσR3(8
+,F ) (3.21)

on Fscatt, and

W0(F ) ≡ eiσR3(8
0,F ) (3.22)

on Ffree. Each of theWs satisfies the Weyl form the CCRs.

W(F1)W(F2) = e−iσR3(F1,F2)W(F1+ F2) (3.23)

and the fields are recovered from theWs via differentiation, e.g.

σR3(8−, F ) = −i
d

dα
Win(αF )|α=0.

At this point we digress to review some well known algebraic facts. To begin with, each
of the operators (3.20)–(3.22) generates its ownC∗-algebraAin, Aout andA0, respectively.
These algebras are constructed by first obtaining the set of all finite sums of the form∑

α

cαW(Fα) cα ∈ C

and then taking the norm closure of this set in the Banach space of all bounded operators
on the representation space. We use the triplet(A, W, H) to denote the algebraA, its
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Weyl generatorW, and the Hilbert spaceH on which it acts. We have three such triplets
(Ain, Win, Fscatt), (Aout, Wout, Fscatt) and (A0, W0, Ffree). MoreoverAin, Aout andA0

are isomorphic to one another. This follows from a general equivalence result which states
that any twoC∗-algebras generated by Weyl operators satisfying (3.23), and defined via
the same symplectic form over the same pre-Hilbert space (in this caseH0(R3,R)) are
isomorphic [31]. We denote these isomorphisms by

γin/out[W0(F )] =Win/out(F ) (3.24)

and

s[Win(F )] =Wout(F ). (3.25)

We use (3.24) to construct the ‘in’ and ‘out’ vacuum states. Finally, note that the time
development of the time-zero operatorsWin(·),Wout(·) andW0(·) is governed by the free
dynamics, e.g.W0,t (F ) ≡W0(U0(0, t)F ). SinceU0(0, t) is real, symplectic and invertible
it defines a time evolution automorphismα0(t, 0)W0(F ) ≡ W0,t (F ) with similar relations
holding forWin(·) andWout(·).

Recall that a state over aC∗ algebra is a positive linear functional with norm one. The
vacuum stateω0(·) overAout is given by

ω0(W0(F )) ≡ e
− 1

2‖K0F‖2
L2(R3)

whereK0 is defined in (2.14). It is well known thatω0(·) is stationary underα0(t, 0), as well
as automorphisms that represent the full Poincaré group. Moreover,α0(t, 0) is generated
by a unitary group with positive energy. Thereforeω0(·) is interpreted as a no-particle state
and is realized as follows,

ω0(·) = 〈90,vac, [·]90,vac〉Ffree

where90,vac= (1, 0, 0, . . .). Similarly, a single-particle stateω0,f (·) is represented by the
vector9f = (0, f,0, . . .),

ω0,f (·) = 〈90,f , [·]90,f 〉Ffree

and so on for multiparticle states.
We make use of (3.24) to obtain vacuum states forAin andAout, i.e.

ωin,0(·) ≡ ω0 ◦ γ−1
in (·) (3.26)

and

ωout,0(·) ≡ ω0 ◦ γ−1
out (·). (3.27)

One readily checks that

ωin,0(Win(F )) ≡ ω0 ◦ γ−1
in (Win(F ))

= ω0(W0(F ))

= e
− 1

2‖K0F‖2
L2(R3)

with a similar calculation applying forωout,0(·). We interpretωin,0(·) and ωout,0 as
no-particle states in the distant past and future, respectively. Similarly, we interpret
ωin,f (·) ≡ ω0,f ◦ γ−1

in (·) andωout,f (·) ≡ ω0,f ◦ γ−1
out (·) as containing a single asymptotic

particle in the distant past and future, respectively, and so on for multiparticle states.
We are finally ready to construct the ‘in’ and ‘out’ vacuum vectors. For this we use

the GNS construction [29]. The essential result is that given a stateω(·) over aC∗ algebra
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A one can define a cyclic representationÃ, of A, acting in a Hilbert spacẽH with cyclic
vector9ω such that

ω(A) = 〈9ω, Ã9ω〉H̃.
We apply this result to statesωin,0 and ωout,0 and obtain new representations(Ãin, W̃in,
H̃in) and (Âout, Ŵout,Ĥout) with vacuum vectors9̃in,vac and 9̂out,vac, respectively. These
new representations are unitarily equivalent to(A0, W0, Ffree) [32]. Specifically, we have
Uin : H̃in → Ffree, where

UinW̃in(F )9̃in,vac≡W0(F )90,vac. (3.28)

This operator provides a means of identifying particle vectors inH̃in. For example, the
vectors 9̃in,vac = U−1

in 90,vac, and 9̃in,f = U−1
in 90,f are no-particle and single-particle

vectors, respectively, and so on for multiparticle vectors. A similar analysis applies to
(Âout, Ŵout, Ĥout), with a corresponding definition forUout.

3.3. The scattering operator

We are finally ready to construct the scattering operator. For this, we follow closely the
work of Dimock and Kay [10]. We choose to work with the representation(Ãin, W̃in, H̃in).
The first step is to obtain a representation ofWout on H̃in. From (3.15) we have

σR3(8+, F ) = σ
R3 (8

−, S−1
cl F)

from which we define

W̃out(F ) ≡ W̃in(S
−1
cl F)

which is the desired representation. This defines a mapping,

SW̃in(F ) = W̃out(F ). (3.29)

It remains to be shown that (3.29) is unitarily implementable, i.e. that there exists a unitary
operator onH̃in such that

S̃W̃in(F )S̃−1 = W̃out(F ). (3.30)

It should be noted that the operatorS̃ that we use is the inverse of the scattering operator
as defined in some texts [26]. Assuming such an operator exists, then the out vacuum (on
H̃in) is given by

9̃out,vac= S̃9̃in,vac.

To see this, consider,

〈9̃out,vac, W̃out(F )9̃out,vac〉H̃in
= 〈S̃9̃in,vac, W̃out(F )S̃9̃in,vac〉H̃in

= 〈9̃in,vac, S̃−1W̃out(F )S̃9̃in,vac〉H̃in

= 〈9̃in,vac, W̃in(F )9̃in,vac〉H̃in

= 〈9̃0,vac, UinW̃in(F )U
−1
in 9̃0,vac〉F free

= e
− 1

2‖K0F‖2
L2(R3) .

Also, if such an operator exits, we can use it to compute transition amplitudes between
multiparticle ‘in’ and ‘out’ states, i.e.

Sf1 . . .fN ,g1 . . .gM ≡ 〈9̃in,f1...fN , S̃9̃in,g1...gM 〉H̃in

= 〈9̃in,f1...fN , 9̃out,g1...gM 〉H̃in
. (3.31)
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The amplitude (3.31) is the probability of obtaining the state9̃out,g1...gM in the distant future
given that the system was in the state9̃in,f1...fN in the distant past.

Before proving the implementability of (3.29) we review some needed results. We start
with the concept of a ‘one-particle structure’(K,H, e−iht ) for a linear dynamical system
(D, σ (·, ·),U(t, 0)) consisting of a real vector spaceD, a symplectic form, and a one-
parameter symplectic group [2, 10, 33]. The one-particle structure consists of a complex
Hilbert spaceH regarded as a real symplectic space with symplectic form 2 Im〈·, ·〉H, a
symplectic operatorK : D→ H,

2 Im〈KF1,KF2〉H = σ(F1, F2)

that maps onto a dense domain, and a unitary group e−iht on H with strictly positive
generatorh satisfying

KU(t, 0) = e−ihtK.

An important feature of these structures, which we exploit, is that they are unique in the
sense that for any two such structures(K1,H1, e−ih1t ) and(K2,H2, e−ih2t ), the operator

6 = K1K
−1
2

which is defined on the dense domainK2D, extends to a unitary operator6 : H2 → H1

[34].
Now, consider the free dynamical system(H0(R3,R), σR3(·, ·), U0(t, 0)). It is well

known that(K0, L2(R3), e−iB0t ) is a one-particle structure for this system [10]. We also
have,

Lemma 3.The triplet (K0Scl, L2(R3), e−iB0t ) is one-particle structure for the free system
(H0(R3,R), σR3(·, ·), U0(t, 0)).

Proof. First, we show thatK0Scl : H0(R3,R) → L2(R3) onto a dense set. This follows
from the fact thatScl : H0(R3,R)→ H0(R3,R) is a bijection, and thatK0 mapsH0(R3,R)
onto a dense set inL2(R3). It remains to show that

K0SclU0(t, 0) = e−iB0tK0Scl. (3.32)

This follows from (2.29) and the fact thatK0U0(t, 0) = e−iB0tK0. �

At this point we have two one-particle structures(K0, L2(R3), e−iB0t ) and
(K0Scl, L2(R3), e−iB0t ). From the equivalence result of Kay [34],

6 ≡ K0SclK
−1
0

extends to a unitary operator onL2(R3). We exploit this fact as follows. First, note that
W0(F ) can be written as

W0(F ) = Ŵ0(K0F) (3.33)

where

Ŵ0(f ) = ei[a0(f )−a∗0(f )]

for f ∈ L2(R3). This is the Fock representation of the Weyl algebra,

Ŵ0(f1)Ŵ0(f2) = e−i Im〈f1,f2〉L2(R3)Ŵ0(f1+ f2)

over (L2(R3), 2 Im〈·, ·〉L2(R3)) [31]. Now, since6 is unitary onL2(R3), we have

S−1Ŵ0(f )S ≡ Ŵ0(6f ) (3.34)
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whereS is the second quantization of6, i.e.

S ≡ I ⊕6 ⊕ (6 ⊗6)⊕ (6 ⊗6 ⊗6)⊕ · · · .
From (3.33) and (3.34) we have

SW0(F )S
−1 = SŴ0(K0F)S

−1

= Ŵ0(6
−1K0F)

=W0(S
−1
cl F) (3.35)

where6−1 = K0S
−1
cl K

−1
0 . This result is the key to the implementability of (3.29) which

we now prove.

Theorem 3.3.The mapping

SW̃in(F ) = W̃out(F )

is unitarily implementable.

Proof. From (3.28) we have

W0(F ) = UinW̃in(F )U
−1
in . (3.36)

Substituting (3.36) into the left-hand side of (3.35) yields

SUinW̃in(F )U−1
in S

−1 =W0(S
−1
cl F). (3.37)

Next, apply (3.28) to both sides of (3.37) and obtain

U−1
in SUinW̃in(F )U−1

in S
−1Uin = U−1

in W0(S
−1
cl F)Uin

= W̃in(S
−1
cl F)

= W̃out(F ). (3.38)

Comparing (3.30) with (3.38) we see that

S̃ ≡ U−1
in SUin (3.39)

is the desired unitary quantum scattering operator. �
Finally, it is instructive to compute the action of̃S on ann-particle in vector. Let

9
(n)

0 ∈ F0
free be ann-particle vector,

9
(n)

0 = (0, 0, . . . , 9(n), 0 . . .)

where

9(n) = 1

n!

∑
π

fπ1 ⊗ fπ2 ⊗ · · · ⊗ fπn

as defined in (3.3). The corresponding vector inH̃in is 9(n)

in = U−1
in 9

(n)

0 . Now, consider the
action of S̃ on this vector,

9out = S̃9(n)

in

= U−1
in SUinU−1

in 9
(n)

0

= U−1
in S9

(n)

0

= U−1
in 9

(n)

0,S

where

9
(n)

0,S = (0, 0, . . . , 9(n)
S , 0 . . .)
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with

9
(n)
S =

1

n!

∑
π

6fπ1 ⊗6fπ2 ⊗ · · · ⊗6fπn.

Thus, we see that then-particle ‘in’ vector scatters to ann-particle ‘out’ vector, implying that
there is no particle creation/annihilation. This can be understood on a more intuitive level by
noting that the classical interacting Hamiltonian can be diagonalized by an operator similar
to (2.13), and that the resulting positive and negative frequency components propagate
independently of one another, i.e. there is no mixing of these modes.
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Appendix A

In this section we specify the support properties of smooth solutions of the Klein Gordon
equation on exterior domains.

Theorem A.1.Let φ(t, ·) be a smooth solution of the exterior Dirichlet problem for the
Klein–Gordon equation. If the initial dataφ(0, ·), ∂tφ(0, ·) have supportO ⊂ �, then the
support ofφ(t, ·) is contained in

M(O, t) ≡ {x ∈ � : dist(x,O) 6 |t |}.
Proof. This proof follows closely the standard proof for the wave equation (m = 0) on
exterior domains [24]. Specifically, we show that if the initial data are zero on the exterior
of O then the solution will be zero on the exterior ofM(O, t). It suffices to show that if
the data are zero on a ball

Bx0(R) = {x : |x − x0| < R}
not intersectingO, then at any later timeT the solution will be zero on the ballBx0(R−T )
where 06 T 6 R.

We start by multiplying the field equation (2.1) by∂tφ and then integrating the resulting
divergence over a truncated spacetime cone regionG with bottom and top defined byBx0(R)

andBx0(R − T ), respectively, i.e.∫
G

{∂t [(∂tφ)2+∇φ · ∇φ +m2φ2] +∇ · (−2∂tφ∇φ)} dx dt = 0. (A.1)

We apply Gauss’s theorem and equate (A.1) to an integral over the boundary ofG

consisting of topBx0(R), bottom Bx0(R − T ), side CT , and remaining side portion
∂�T ≡ ([0, T ]× ∂�)∩G which represents the most general case in whichG intersects the
obstacle3, i.e.

0= E(T )− E(0)+
∫
CT

{n0[(∂tφ)
2+∇φ · ∇φ +m2φ2] + n · (−2∂tφ∇φ)} da′

+
∫
∂�T

n · (−2∂tφ∇φ) da (A.2)

where

E(T ) ≡
∫
Bx0(R−T )

[(∂tφ)
2+∇φ · ∇φ +m2φ2]|t=T dx
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and da′ and da are the differential area elements onCT and ∂�T , respectively, and
n̂ = (n0,n) is the unit normal vector to the boundary ofG.

Sinceφ(t, x) is a smooth solution and satisfies that classical Dirichlet condition, the
integral over∂�T is zero. Moreover, onCT we have

n2
0 = n · n = 1

2

and therefore, the integral overCT can be rewritten as

√
2
∫
CT

{ 3∑
j=1

(n0∂xj φ − nj∂tφ)2+ n2
0m

2φ2

}
da′

which is positive definite. Thus from (A.2) we have

E(T ) 6 E(0)
which implies that ifφ is zero onBx0(R) then it is zero onBx0(R − T ). �

Appendix B

In this section we prove the existence and completeness of the classical wave operators.

Theorem B.1.The wave operatorsW± defined in (2.22) exist and are complete, i.e.

Ran(W±) = Pac(H)H(�)
wherePac(H) is the projection onto the absolutely continuous spectrum ofH . Moreover,
W± are independent of the choice of identification operator.

Proof. We follow closely an existing proof for the wave equation (m = 0) on exterior
domains [26, theorem XI.78]. The strategy is to reduce the existence and completeness
of our two-component wave operatorsW± to the existence and completeness of related
single-component wave operators [26, theorems XI.75 and XI.76].

We begin with some preliminary definitions. Let−4�D and −4
◦
3
D be the Dirichlet

Laplacians on the open sets� and
◦
3 (

◦
3 denotes the interior of3) [25]. We define

−4�∪
◦
3

D ≡ −4�D ⊕ −4
◦
3
D which is self-adjoint onL2(� ∪ ◦3) = L2(�) ⊕ L2(

◦
3) with

D(−4�∪
◦
3

D ) ≡ D(−4�D) ⊕ D(−4
◦
3
D). Note,L2(� ∪ ◦3) ⊂ L2(R3). We further define the

Dirichlet Laplacian onL2(R3) with boundary∂�,

−4R3\∂�
D = U(−4�∪

◦
3

D )U−1

whereU : L2(�∪ ◦3)→ L2(R3) is the (unitary) natural injection andU−1 ≡ PL2(�)⊕ P
L2(

◦
3)

(projection onto closed subspace). It follows that−4R3\∂�
D is self-adjoint onL2(R3).

We extend these concepts to the two-component formalism. Let

H(� ∪ ◦3) ≡ H(�)⊕H( ◦3)
whereH(�) ≡ D(

√
−4�D) ⊕ L2(�) etc. The elements ofH(� ∪ ◦3) are represented by

pairs of the formF = (F�, F ◦
3
). We define an interacting Hamiltonian̂H = H� ⊕ H ◦

3
where

H� = i

(
0 I

−B2
� 0

)
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andB2
� = −4�D+m2 with corresponding definitions forH ◦

3
. The operatorĤ is self-adjoint

onH(� ∪ ◦3) with

D(Ĥ ) = D(H�)⊕D(H ◦
3
)

where

D(H�) = D(−4�D)⊕D
(√
−4�D

)
with similar definitions forD(H ◦

3
). From Stone’s theorem we have the unitary group

Û (t) = e−iĤ t where,

Û (t)F = (e−iH�tF�, e
−iH◦

3
t
F ◦
3
).

Next, we introduce the notation

Ŵ±(Ĥ ,H0; J ) ≡ s − lim
t→±∞eiĤ t Je−iH0t .

Recall,H0(R3) = H1(R3)⊕L2(R3), and noteH(�∪ ◦3) ⊂ H0(R3). Let I : H(�∪ ◦3)→
H0(R3) denote the natural injection, and thenI∗ : H0(R3)→ H(� ∪ ◦3) is the projection

ontoH(� ∪ ◦3), i.e.

I∗ = P
H(�∪ ◦3).

Now, Reed and Simon show that̂W(Ĥ ,H0; I∗) exist and are complete if and only if the
wave operators

W̃± ≡ s − lim
t→±∞eiB2

0 te
−iB2

R3\∂�t

exist and are complete onL2(R3) whereB2
R3\∂� = −4R

3\∂�
D + m2 [26, theorems XI.75

and XI.76]. Moreover, they prove the existence and completeness of
◦
W± ≡ s −

limt→±∞ ei(−4)te−i(−4R3\∂�
D )t , i.e. form = 0. However, from the spectral theorem we have

e
−iB2

R3\∂�t = e−im2te−i(−4R3\∂�
D )t

and therefore,

eiB2
0 te−iB2

�∪3t = ei(−4)te−i(−4R3\∂�
D )t

which implies thatW̃± exist and are complete, i.e.̃W± =
◦
W±. This, in turn, implies the

existence and completeness ofŴ±(Ĥ ,H0; I∗).
Next, we prove thatŴ±(Ĥ ,H0; J ) exist and are complete. It suffices to show thatI∗

andJ are asymptoticallyH0−equivalent [26, proposition 5]. For this we show that

lim
t→±∞‖(I

∗ − J )e−iH0tF‖
H(�∪ ◦3) = 0 (B.1)

for F ∈ H0(R3). Note that,H(� ∪ ◦
3) ⊂ H0(R3), and therefore,‖I∗F‖

H(�∪ ◦3) 6
‖I∗F‖H0(R3). Consider

‖(I∗ − J )e−iH0tF‖
H(�∪ ◦3) 6 ‖(I

∗ − I )e−iH0tF‖H0(R3) + ‖(J − I )e−iH0tF‖H0(R3). (B.2)
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We useI∗ − I = P
H(�∪ ◦3)⊥ to estimate the first term on the right-hand side of (B.2), i.e.

‖P
H(�∪ ◦3)⊥e−iH0tF‖H0(R3) 6 ‖PH(�∪ ◦3)⊥Je−iH0tF‖H0(R3)

+‖P
H(�∪ ◦3)⊥(I − J )e

−iH0tF‖H0(R3). (B.3)

The first term on the right-hand side of (B.3) is zero becauseJe−iH0tF ∈ H(�). Therefore,
from (B.2) and (B.3) we have

‖(I∗ − J )e−iH0tF‖
H(�∪ ◦3) 6 ‖PH(�∪ ◦3)⊥(I − J )e

−iH0tF‖H0(R3) + ‖(J − I )e−iH0tF‖H0(R3)

6 2‖(J − I )e−iH0tF‖H0(R3) (B.4)

where in the last step we have used the fact thatI − J : H0(R3) → H(� ∪ ◦3)⊥. Now,
sinceJ − I is zero off a compact set, and since e−iH0tF decays to zero over any such set
as shown in (2.9), we have that (B.4) tends to zero in the limit which implies the desired
result (B.1).

At this point we have the existence and completeness ofŴ±(Ĥ ,H0; J ) with

Ran(Ŵ±(Ĥ ,H0; J )) = Pac(Ĥ )H(� ∪
◦
3). (B.5)

We are finally ready to prove the completeness of our operatorsW±. First, note that

Je−iH0tF = (Je−iH0tF, 0)

i.e. the component of the subspaceH(
◦
3) is zero. Therefore, we have

eiĤ t Je−iH0tF = (eiH�tJe−iH0tF, 0)

which in the limit gives

Ŵ±(Ĥ ,H0; JR0) = W± ⊕ 0 (B.6)

which, in turn, implies that

Ran(Ŵ±(Ĥ ,H0; J )) = Ran(W±)⊕ 0. (B.7)

From (B.5) and (B.7) we have

Ran(W±) = Pac(H�)H(�)
and thereforeW± are complete. Finally,W± are independent of the choice of identification
operator because any two such operators differ only on a bounded set, and the free solutions
decay to zero over any such set. �
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